by The ¢

Copyright © 1984
Alternate Source

704 North Pennsylvania Avenue

i@ﬁggﬁ&

Il 48906
(5 E ?) 482@32?@

Té

INSTALLING TASMONY .
TASMON FORMATS AND CONVENTIONS « e e
MEMORY USAGE . o e e e
LOADING AND REENTERING TASMON e e e e
EXITING TASMON
TASMON COMMANDS o e e e e
REPLACE REGISTERS e e e
MODIFY MEMORY
MEMORY DUMPS
HEX DUMPS . . .
ASCII DUMPS o e
DISASSEMBLED DUMPS .
DISASSEMBLED LISTING TO PRINTER
DUMP SCREEN CONTENTS TO PRINTER . .
SUM/SUBTRACT HEX VALUES . . e
FIND CONSECUTIVE BYTES IN MEMORY
ZERO A BLOCK OF MEMORY . .

SKIP OR BACK UP ONE INSTRUCTION o
USER ROUTINES . . e« e e

CLEAR SCREEN . .
RELOCATE AND MOVE MEMORY

L3 e o o o e o

b
OWCWO~N~NJOOONOOVIUINTE EEWWN = -

VIEW A FILE
LOAD A FILE 11
WRITE A FILE . 11
lE DISASSEMBLE TO DISK 11
BREAKPOINTS A
SET AND DISPLAY BREAKPOINTS 13
!E NUMBER OF EXECUTIONS BEFORE BREAK 11
. CLEAR BREAKPOINTS .. 14
INSTRUCTION STEP COMMANDS 15
SINGLE STEP . D [
SINGLE STEPPING RESTARTS 15
TRACE COMMANDS .. 15
GO COMMAND 16
KEEP SCREEN 17
GENERAL COMMENTS . 18
SINGLE STEPPING THROUGH BASIC 18
ﬂ! SAMPLE SESSIONS i 21
K " SESSION 1 - RELOCATE TASMON . 21
SESSION 2 - STEP AND TRACE A /CMD FILE 22
SESSION 3 - DISASSEMBLE PROGRAM TO DISK 28
SESSION 4§ - TRACE A BASIC PROGRAM 32
APPENDIX A - DOS ERROR MESSAGES 35
APPENDIX B - TASMON COMMAND SUMMARY 36
APPENDIX C - SAMPLE USER FUNCTIONS 39
MODEL IV TASMON TECHNICAL NOTES 37

-

'] ﬂll i!i ']
! V , !

T
With TASMON (The Alternate Source's Monitor), memory may be
examined/modified and machine language programs executed.
Machine language programs may be run in real time, single step or
slow motion. Your Z-80 registers may be examined/modified. They
are continuously displayed in the upper right part of the screen.
Three different memory dumps can be displayed on the left side of
the screen while executing any TASMON command on the right side
of the screen. Memory can be disassembled and routed to disk as
an Editor/Assembler source file with labels generated for
pertinent addresses. Machine language disk files can be read in
and written out.

INSTaL T

There is a program on the distribution disk called INSTALL/CMD.
You will have to have this program on one of your disks in order
to put TASHMORY on your working TRSDOS 6.x backup. After you have
used the INSTALL program once, you can put it away. All other
copies of TASMON4 can be made by backing up the working master
that you make with INSTALL.

Running INSTALL/CHD is easy. Just make sure that the file
SYS13/0BJ is on a copy of TRSDOS 6.x in drive 0 and type INSTALL.
As long as INSTALL is in a drive and SYS13/0BJ is on a TRSDOS 6.x
disk in drive 0, all should go well, and after accessing drive 0
for a while, INSTALL should say "TASMON overlay installed." If
something should go wrong, INSTALL will give an error message and
abort back to TRSDOS Ready. Correct the error and try again.
REMEMBER - FURTHER BACKUPS CAN BE MADE FROM THE INSTALLED TRSDOS
6.x DISKI!! It is also important to note that after INSTALL has
run, 3YS13/0BJ will no longer gppear in your TRSDOS 6.x
directory. That's ok. INSTALL has actually put the code from
SYS13/0BJ into SYS13/SYS and killed SYS13/0BJ.

All numbers displayed by TASMON are hex unless otherwise noted.
In all examples given below, user inputs are underlined.

The version of TASMON on the distributed diskette loads in memory
from EOOO-FFFF with an entry point cf 2000,

There is also a short machine language program entitled
"TEST/CMD" which is used in the sessions discussed at the end of
this manual.

For the most part, TASMON uses single letter commands and the
ENTER key is not needed. The BREAK Key may be depressed at any
time to exit a command (except when writing/loading files to/from

”g

disk.) The LEFT ARROW does not backspace the curSor (unless
entering a file name) so hit the BREAK key and re-enter the
command if a migtake is made.

When a four or two digit number is being input, any and all
leading zeros must be entered.

TASMON uses the DOS keyboard, video and printer routines. If a
key is held down, after a pause it will start repeating. The
video display supports upper/lower case. TASHMON displays the
down-arrow key on the video display as a backslash which we have
chosen to represent with an exclamation point (!{). So, when you
see an exclamation point, think "down-arrow."

when TASMON is entered, the user's stack pointer is set at 03AO0.

The user may change it as needed provided it does not interfere
with TASMON.

The reglister display appears on the the right side of the screen
in this format:

CALL 01C9

IX 5248 IY F29A
AF' E234A BCY 1530
DE? O6FA HL® BCO9
AF 0044 BC 0284A
DE DS80 HL 3DF5
SP 0340 PC 8000
elee=Poe (HL) FF

The top line is the Zilog disassembled mnemonic of the
instruction pointed to by the PC register (8000 in this case).
The four digit hex number following each register pair is the
current value of that register pair. The last line of the
display is the status of the Z-80 flags (F register). A "=V
indicates that the bit is cleared. The "FF" following "(HL)" is
the value found at the current address of HL. In this case "FF"
is at memory location 3DF5. All user inputs are done on the
sixteen lines below the register display.

ORY USAGE

TASMON uses approximately 8K of memory. Some SVC's are used to
decrease program size. No RAM outside of TASMON is used with the
exception of the symbol table when disassembling to disk, the
user's screen memory when using the KEEP SCREEN command, and the
DOS overlay area. One of the most commonly made errors with
TASMON is using it to disassemble to disk and not reserving
enough room in RAM for the symbol table. If you want to
disassemble to disk, the best way is to make sure that TASMON
resides from E0Q00-FFFF and to set HIGH$ to DFFF. Before entering
TASMON, type:

m

MEMORY (HIGH=X'DFFF')

at TRSDOS Ready, which will set HIGH$ to DFFF. Then enter TASMON
by typing:

TASMONY

at TRSDOS Ready. Finally, if TASHMONU isn't at EO00-FFFF (it is,
if you loaded it straight from our distribution disk) then
relocate it with the X command {(described in detall in the
command summary.)

G & ION

For executing the program from disk, type the following from DOS:

TASHMONY
The Z-80 registers and the caret user prompt will be displayed.

If TASMON is exited for socme reason there are two ways to reenter
the monitor:

1) CGo to BASIC and type:

DEFUSR=&HE000 <ENTER> (assuming that TASHON is at E000)
X=USR(0) <ENTER>

where "E0OD0" is the hex starting address of where TASMON was
located in memory.

2) With a DOS system enter DEBUG and type:
G EQOO

where "EQ0O0OY" is the hex starting address of where TASMON was
located in memory.

When TASMON is reentered in this manner the user's registers are
not changed. However, any breakpoints that were set are cleared.

The "EY or EXIT command is used to leave TASMON. To execute this
command enter:

E <ENTER>

The ENTER key needs to be pressed as a safety precaution to
prevent exiting the monitor unexpectedly.

The following is a list of TASMON's commands and the format with
which they are entered.

The REPLACE command changes any of the Z-80 registers. To use
the command press "R", the first letter of the register pair to
be changed (the second letter is also required for IX and 1Y),
and the new four digit register value. An apostrophe is typed
after the register pair name if the secondary set is to be
changed. The display will appear as follows:

R HL O09AF set HL to O09AF
R AF* 2044 set AF' to 2044
MODIFY MEMORY

The Modify memory command allows the user to change the contents
of RAM. To execute the command press "M", an "A" or "H®" (for
modification to be in ASCII or hex mode) followed by the address
to modify. If the ENTER key is depressed for the address to
modify, the current PC address is used for the starting
modification address.

The ASCII modification mode accepts single character ASCII values
and places them in the addresses being modified. The only
control code recognized is the carriage return. The hex mode
puts two digit hex values into an address. The current contents
of the modification address will be displayed in the format:

ADDRESS ASCII HEX

Where "ADDRESS® is the memory address being modified, "ASCII® is
the ASCII value of the byte at WADDRESS®™ (only displayed if the
value is between 20-TF) and "HEX" is the hex value of the byte.

To change the contents of ADDRESS, type in a new two digit hex
value or one ASCII character depending on which modification mode
was selected. The up arrow will leave the current address
unmodified and move to the previous byte. The down arrcw will
move down to the next byte. To exit, hit the BREAK key. A
typical display is:

M H TO07F C 43 AE Hex modify mode, address is TOTF, ASCII
value of byte at that address is "C", the hex value is 43 and the
byte was changed to AE.

7080 82 <UP ARROW> Move up one byte
T07F AE <BREAK> Exit modify mode

There are three memory dumps in TASMON:

1) Hexadecimal dump
2) ASCII dump
3) Disassembled dump

All three dumps are initiated by pressing the appropriate command
key followed by a four digit hex value where the dump is to
start. Pressing the ENTER key instead of the four digit starting
value causes the dump to begin at the current PC register. The
screen will clear and 15 lines of the dump will be displayed.

Pressing the SPACE BAR at this point causes the next 23 lines to
be displayed. The DOWN ARROW is used to display the next line.
Pressing the "=" key causes the display to move back in memory 23
lines (B8H bytes with ASCII and Hex dumps, 23 instructions with
disassembler). Holding down any of these command keys will cause
them to repeat. Pressing the BREAK key, as always, returns
control to command mode.

The hex dump will display the hexadecimal values of memory
starting with the address entered. For example:

H 5200

will cause this type of display to appear om 23 lines:

5200 45 AF 20 OF €3 DD 00 ED
5208 34 A8 FF FF 99 83 FA 00

The 5200 is the address and 45 is located there, 5201 holds AF,
ete.

The ASCII dump will display 20-7F values as the appropriate ASCII
character. All other values are displayed in hex. For example:

A FOOC

will cause this type of display on 23 lines:

FOOC T H E0003 B O Y

D DUMP

The Disassembled dump will display memory in Zilog mnemonics.
This dump makes reading programs8 much easier. For example:

D 0000

Wwill cause the screen to clear and fifteen lines like the
following to appear:

0000 FE DI
0001 AF XOR A
0002 C37406 JP 0674

Relative jump addresses are displayed giving their destination
address (like an absolute jump) instead of a relative offset.

Illegal instructions are disassembled with "DEFB h" as the
instruction where "h" is the offending byte. For example:

8000 CB DEFB CB
8001 3007 JR NC, 8004

D LISTING TO PRINTER

The "P" or PRINT command is used to route disassembly to the
printer. To run this command press "P", the starting address of
the dump and the ending address of the dump. The disassembly is
also echoed on the screen. Pressing the BREAK key at any time
will cause printing to stop. If this command is executed and the
printer is not ready, control returns to TASMON with nothing
printed. For example:

P 0000 OOFO Disassemble to the printer starting at 0000
and ending at O00FO.

Pressing the "%" key while TASMON is waiting for keyboard input
(except when a file name is being entered) will cause the current
screen display to be sent to the printer. If the printer is not
ready at the time the "%%" jis pressed, nothing is printed and
control returns to TASMON. Graphics characters are printed as
periods.

This command will either sum or subtract two four digit hex
values. Press "S" and two values followed by a "+" for sum or a
"-% for subtract. The second value is added to or subtracted
from the first. For example:

E E E EEEEESES=

S 06100 8023 + 8123
S EC00 0100 = EBOO

FIND CONSECUTIVE BYTES IN

The find command will locate positions in memory where from 1 to
4 uyser specified two digit hex digits occur.

To run the command press "F¥, the starting address of the search
and from 1 to 4 two digit search bytes. If less than U4 bytes are
input, the ENTER key must be depressed to start the search.
Pressing "F" followed by ENTER will find the next occurence of
the last search key entered.

The address where the bytes were found is printed after the
command line. If no value is printed, there were no more
occurences of the search key in memory. For example:

F 0000 AF 54 <ENTER> 4176

Find where AF 54 resides in memory starting at 0000. First
occurence was at 4176.

F <ENTER> 87FE

Find next occurence of AF 54, Found to be at 8TFE.

F <ENTER>

No value was printed s0 there were no more occurences.

NOTE: The FIND command will always locate at least one occurence
of the search key since the search key is stored in TASMON.

ZERO & BLOCK OF ORY

The "7% op ZERO MEMORY command is used to set a block of memory
to some value. To execute ZERO MEMORY, press the "ZI" key, a
starting address, an ending address and a two digit hex value to
be written into the block. For example:

Z FOOO FO50 will set memory from F000 through FO050 to 54,

1
!0 im
<o =

F00O F050

will set memory from FOOO through F050 to 00.

SKIP OR BACK UP ONE INSTRUCTION

To move the user's PC register to the next instruction without
executing the current instruction press the RIGHT ARROW key. To
move back to the previous instruction press the LEFT ARROW key.

These commands allow an instruction to be easily repeated or
skipped. For example:

If the user's PC register holds 8000 and the following code is in
memory:

TFFL 2110F0 LD HL,F010
8000 110000 LD DE, 0000
8003 C38392 JP 9283

Pressing the LEFT ARROW would move the PC register back one
instruction or to 7FFD. Pressing the RIGHT ARROW would skip the
instruction at 8000 and move PC to 8003.

USER ROYTINES

This command is undefined by TASMON. It allows the user to
define a routine to be executed by pressing the "U" key. If the
“U" key is pressed without a user routine present nothing
happens. To put a user routine in place, TASMON must be changed
via the MODIFY MEMORY command so it will jump to the routine,
The first step is to find where in memory to modify. TASMON

checks for commands with the following type of code:

cp o
JP Z,ADDRESS

To patch in a user routine the address at "ADDRESS"™ must be
changed to the entry address of the user's routine. To find
where to modify enter the following, replacing the "E00O" with
the starting address of your working copy of TASMON:

F E000 FE 55 CA <ENTER> E085

The FIND command just found the first occurence of the menu
select routine for the "U" key. The E000 address should be
substituted with the starting address of TASMON (EOOO in this
case). The FE 55 is a "CP 'U'% Z-80 instruction, and the CA is
the first byte of the "JP Z,ADDRESS" instruction.

To patch the user routine in place, MODIFY MEMORY in hex at three
plus the address returned by FIND (this is the jump address).

Now type in the entry address of the user routine in Z-80 format
(LSB first, MSB last).

The patched version of TASMON can be written to disk. Refer to
the WRITE command discussed below for instructions on how to do
SO.

To return from the user routine to TASMON simply do a Z-80 "RET"™
instruction (assuming the stack pointer has not changed).

The USER function will be supported by various routines in the
future.

CLEAR SCREEN

The clear screen command will clear the video display and
redisplay the Z-80 registers. To execute this command press the
SHIFT-CLEAR key.

RELOCATE AND MOVE MEMORY

The KELOCATE command allows a machine language program to be
moved from one location to another. All necessary jumps and
loads within the range of relocation are changed. This command
can be used to move TASMON from one location to another.
RELOCATE can move many other machine language programs to new
execution addresses.

To RELOCATE memory, press an "X" followed by the starting point
of the move, the ending point of the move and the starting
address of where the code is to be moved to. RELOCATION takes
about 3 seconds per 4K of memory moved.

Suppose a program was loaded in memory from 8000 to 9FFF and we
want to move it to EO000 to FFFF. The command flow would go like
this:

X 8000 9FFF E000 RELOCATE from 8000 to 9FFF and move it to E000

NOTE: The RELOCATE command will function correctly if code is

overlapped. However, it will not allow TASMON to be overlapped
while relocating.

For example, if a program resides from 8000 to 9FFF and is
relocated to a new starting address of 9000, the relocated code
will reside from 9000-AFFF. The relocated version overlaps the
origin memory block of 8000 to 9FFF. This type of relocation
Wwill work with all programs except TASMON.,

A problem can occur when relocating. For example, suppose the
following code was in memory:

8000 210080 LD BC, 8000H
8003 CD6000 CALL STALL

Suppose we relocated memory from 8000 through B80FF to E000. The
code at E0OOO would appear as follows:

EQOQ0O0 2100EO0 LD BC,OEOQOO00H
EOO03 CD6000 CALL STALL

10

If 8000 was a pointer to a text message, the change from 8000 to
E000 would be correct, but in this case the 8000 was a stall
value since the call to STALL is a delay routine. The change
from 8000 to EO00 in effect doubles this stall.

There are other occurences of this type. Another is when a
register pair is loaded with, for example, the number of bytes to
read from a disk file. If this number is changed the results
could be disastrous.

Even with these two potential problems, RELOCATE does function
with most programs.

MOUE A BLOCK OF MEMORY

To MOVE a block of memory from one location to another use the
"Y" command. The command parameters are the same as for.the
RELOCATE (starting address, ending address and new starting
address) command. This command simply copies memory from one
location to another. The move routine is "smart" enough to allow
code to overlap. For example:

Y 6000 6035 5000

Move memory from 6000 through to 6035 to 5000.

INPUT/OUTPUT

The author of TASMON chose to make the program's disk I/0 file
oriented rather than sector oriented as most other monitors.
This allows a disk file to be loaded into RAM and then written
back out.

VIEW A FILE

The VIEW command is similiar to the LOAD command in that i?
returns the starting, ending and transfer addressgs of a disk
file, except the VIEW command-does not load the file into memory.

To execute the VIEW command press "V"., A file name must be
entered. For example:

v
CHESS/CMD
7000 8FA3 7535

The file "CHESS/CMD" was VIEWed from disk. The starting, ending
and transfer addresses were found to be 7000, 8FA3 anq 7535
respectively. Memory from 7000 to 8FA3 was not modified however.

11

NOTE: it is good practice to VIEW a file before LOADing it to
verify the module will not load over TASMON.

LOAD & FILE

To LOAD a CMD file from disk press the "L" key, the ENTER key or
a load offset, and a filename. For example:

L <ENTER> Load the file TEST/CMD into memory from disk
TEST/CHD

After a module is loaded, the starting, ending and transfer
addresses are displayed in that order. A typical load display
would be:

L <ENTER>
MYPROG/CMD <ENTER>
FO00 FO35 FO10

The starting address of the program is F000, the ending address
is F035 and the transfer address is FO0i0.

WRITE & FILE

To write a file out press "W" (for WRITE) followed by the
starting, ending and entry addresses. Lastly, the filename is
entered. When entering a file name the SHIFT BACKSPACE does not
function. The BACKSPACE must be repeatedly pressed or held down
to get to the beginning of the line.

If the above block move example was to be written to disk the
following would be keyed in:

W 6350 6CO8 6BFB
FILE/CMD

Write to disk starting at 6350, ending at 6C08 with an entry of
6BFB. Use the file name "FILE/CMD"

DISASSEMBLE TO DISK

The OUTPUT command will disassemble to disk as an
Editor/Assembler source file. The code sent to disk is also
echced on the screen. To execute this command press the "0" key
(for OUTPUT) and the starting, ending and transfer addresses of
the dump. A filename is also entered.

A symbol table is generated by TASMON to ease the reading of the
dump. The symbols are created for all 16 bit addresses between
the starting and ending addresses specified. This table starts
at the high memory pointer and builds downward in memory. If

12

there is a program running in high memory make sure this pointer iE
is set to such a value that the program will be protected. If g
TASMON is moved to high memory there will be about 100 bytes free
for the symbol table. There are basically two ways to increase
the symbol table size:

1) Move TASMON lower in memory.
2) Set HIGH$ to the address immediately below TASMON.

Of the two, the second is usually the preferred technique.

The symbol table usés two bytes per label. If large amounts of
memory are being disassembled, there could be a pause of several |
seconds while the symbol table is being generated. EE

The starting address given will be used as the address of the ORG
pseudo-op. The ending address is simply where output will halt.
The transfer address is the address placed on the END pseudo-op.

Any text messages dumped to disk will be sent as Z-80
instructions. Therefore, some work may be required by the user
to generate the proper source code in this case.

The source is written out with line numbers of 00000. Therefore,
the first command executed from Editor/Assembler after the source
has been loaded in would be RENUMBER (i.e. N 100,10).

The command format goes as follows:

O FO00 FO035 FO010 Output to disk starting at F000, ending at

TEST/ASM F035, and entry address of FO10.
Use the file name "TEST/ASM"

The symbols TASMON generates are simply the address in question
preceeded by a "Z". For example, a typical label would be:

20046H CALL Z002BH

Bad symbols can be generated in some instances where text

messages and stall or counter values are used. For example, if
the following code was in memory:

8000 21
8001 0O
8002 1F
8003 10
8004 FD

The bytes at 8000 and 8001 could be the last two bytes of a text
message. The instruction at 8002 is a RRA. The instruction at
8003 is a DJNZ and the offset at 8004 refers back to 8002.
However, when this code is disassembled out it would appear as
follows:

13

LD HL, 1FOCH
DJNZ Z8002H

The symbol "Z8002H" is never defined since the instruction at
8002 was incorrectly disassembled as the most significant byte of
the "LD HL,nn"™ instruction at 8000. The solution for this
problem is to change the symbol "Z8002H" to the address "8002H".
The source code will still appear incorrect but reassembling the
source will give correct results.

NOTE: if a disk error ever occurs with TASMON, an error message
and the TRSDOS error code (in hex) is printed. Refer to appendix
A at the end of this manual for a list of error messages.

BREAKPOINTS

TASMON gives the user control over 9 breakpoints. A breakpoint
allows a machine language program to be stopped at a
predetermined spot and transfer control back to TASMON. For
example, if a breakpoint was set at 8000 and the user's program
executed the instruction at this address, control would be
returned to TASMON.

Breakpoints are labeled 1-9. A three byte breakpoint (CALL nn)
is used to intercept the user's program.

One unique feature of TASMON is that the number of times a
breakpoint is executed before halting may be set for each
breakpoint.

SET AND DISPLAY BREAKPOINTS

To set a breakpoint press "B" followed by the breakpoint number
(1=-9) and a four digit value. Breakpoints may be placed anywhere
in memory. TASMON sets a breakpoint to 0000 in order to clear
it.

To display the breakpoints press "B" and hit ENTER. Three rows
of three sets of 4 and 2 digit hex values will be printed. These
correspond to the values and number of executions for breakpoints
1, 2, 3, etec. For example:

B 8 BOGE sets breakpoint 8 to 809E

B <ENTER> displays all breakpoints
T1F3707 0000 01 03GO 01
7802 01 0000 01 0000 01
0000 01 BO9E 18 0000 01

Breakpoint 1 is set at #41F3 and the execution number is 1,
Breakpoint 4 is set at 7802 and the execution number is 1,

14

Breakpoint 8 is set at 809E and the execution number is 18H, and
all others are cleared.

NOTE: Care should be taken so that breakpoints do not overlap.
For example, breakpoints must differ in address by at least three
to function correctly. Suppose a breakpoint is set at 8000 and
another at 8001. They will not function correctly since the
three byte breakpoints will overlap (8000-8002 and 8001-8003):

Brkpnt 1 brkpnt 2

8000 CALL

8001 1sh CALL
8002 msh 1sb
8003 msh

RUMBER OF EXECUTIONS BEFORE RREAYK

The "N" or "Number of executions before break" command allows
setting the number of times a breakpoint is executed before the
breakpoint is acknowledged. The default value is 01. This means
execution will halt if the breakpoint is executed 1 time.

The formats of the command are:

Nnn Set the number of executions for breakpoint n to "h" (a
value from 00-FF where 00 is 256 decimal).

NI Set the number of executions for all breakpoints to 01
(or the normal number of executions).

N <ENTER> Set all breakpoints back to their set values. This

value will be 01 unless changed by the "N n h" command.

The number of executions value is used only by the TRACE and GO
commands (both discussed below), not by the single steppers. The
value is decremented each time the breakpoint is executed. When
this value reaches zero, execution halts and all execution
numbers are reset to their original values (01 unless changed by
the "N n h" command). The "N <ENTER>" command will also reset
the values.

Most users probably will not use this command. If the execution

number is left at 01, breakpoints will function as with any other
monitor program.

CLEAR BREGKPOINTS
To clear a single breakpoint press "C" followed by the breakpoint
number (1-9). To clear all breakpoints type "C" followed by
ENTER. For example:

g1 will clear breakpoint 1.

C <EMTER> will clear all breakpoints.

MSTRUCTION STEP COMMARDS

There are two types of step commands in TASMOMN, manual and
automatic. Each will start at the location pointed to by the
user's PC register and return control to TASHON and display the
registers. The PC register should contain the execute address of
the user's progran.

SINGLE STEP

There are two types of single steppers in TASMON:

1) step next instruction with CALLs executed in full.
2) step next instruction with CALLs stepped through.

The first type of single stepper will execute one instruction
with CALLS executed in one step. To execute this command hit the
DOWM ARROW key. The user's registers will be redisplayed upon
return to TASMON. If a breakpoint is set within a CALL executed
with this stepper, the CALL will be executed only up to the point
of the break.

The second type of single stepper will execute one instruction
with CALLs stepped through cne instruction at a time. This
command is executed by pressing the "I" key.

eMGLE STEPPING RESTORTS

The 7Z-80 "RST" command is a special single byte CALL. RESTARTS
may be "stepped through" or "executed in full."” The DOWN ARROW
and "I" keys are still used to step restarts, except the "d% or
JUMP THROUGH RESTARTS ccmmand is used to determine how they are
handled. If pressing the "J" key displays a DOWN ARROW, restarts
will be executed in full. If pressing the "J" key displays an
"iv restarts will be stepped through. For example:

I Step through restarts mode is on
! Execute restarts in full mode is on

el

The status of restart stepping has no effect on how CALLs are
handled. For example, CALLs can be stepped through while
restarts are executed in full.

TRACE COMMANDS

The Trace command will continuously single step the user's
program and redisplay his registers. To invoke this command
press the "T" key. Next, enter the type of stepping desired. A

16

DOWN ARROW is used to execute CALLs in full and an "I" for step
through CALLs. For exawmple:

T1I starts TRACE with calls stepped through

The step rate can be varied from about 2 seconds per instruction
to 15 instructions per second by pressing the 0-7 keys while
TKACE is executing (7 is the fastest step rate). Every time
TRACE is entered the step rate is reset to one instruction per
second.

Trace execution is halted by one of four ways:

1) One of the 9 user breakpoints is hit and the execution number 1
is decremented to zero. ‘
2) The BREAK key is depressed (control returns to command mode).

3) The SPACE BAR is depressed (execution pauses until the SPACE 0
BAR is depressed again). I
4) A "RET" instruction was executed while the "RETURN
BREAKPOINT" option was on.

At times the user starts stepping through a CALL. When all the
information needed is found, all the user wants to do is get out
of the call. The "KETURN BREAKPOINT" option is a way of getting
out of the CALL quickly. By pressing the "R" key while tracing,
the "RETUKN BREAKPOINT" option is turned on. When this option is
on, the next Z-80 "RET" or "RET cc" where the condition was met
will halt TRACE execution. This option is like putting a
"floating" breakpoint on YRET" instructions. The only way to
turn this option off is to exit and reenter TRACE.

GO COMMAND

The GO command will start the user's program at full speed.

The only way to halt the user's program is for a breakpoint to be
executed until the execution number is decremented to zero.

To use the GO command, press a "G" followed by either a hex value
where execution is to start or the ENTER keyv (execution starts at
the user's PC register). For example:

000 will start execution at 8000

U
G <EKTER> will start execution at the PC register.

To continue on from a breakpoint with GO do either of the
following:

1) Single step over the instruction where the break occured.
Z) Clear the breakpoint where the break occured then use the GO
commana to continue on.

b
-3

One of these two .steps is required since GOing at a breakpoint
address simply returns control to TASMON with none of the user's
progran executed, Single stepping over the instruction at the
break address then allows the GO command to continue on normally
until the next breakpoint is ewecuted.

NOTE: More than one instruction may need to be single stepped
since a breakpoint uses three bytes. If GO execution is resumed
in the middle of a breakpoint results can be unpredictable.

If the number of executions for a breakpoint is set greater than
one, the GO command will execute part of the user's program at
full speed and single step part of it (single step enough of it
to make sure execution does not resume in the middle of a
breakpoint). The BREAK key may be depressed to halt execution
while single stepping if desired.

|
MOTE: TASMON does not allow an illegal Z-80 opcode to be single
stepped or traced. Bad code is disassembled as "DEFB h." To run
this type of code, a breakpoint must be set after the instruction
and the GO command used to step it if so desired.

R ECREEN
TASMON uses columns 56 to 72 for its displays. However, some
user programs may also use these locations. The YK" or 9KEEP
SCREEN" command may be used to save the screen before TASMON
affects it. When the "KEEP SCREEN"™ option is enabled, the user's
last screen will be redisplayed before single stepping, tracing
or GOing. On return from one of the stepping commands the screen
will be resaved. There are four formats of the K" command as
follows:

start address save screen at "start address?

1) K

2) X JENTERS display user's screen
3) XU turn KEEP SCREEN on
4) X 7. turn KEEP SCREEN off

The first option, "K start address™, is used to initialize the
KEEP SCREEN command. The four digit value "start address" is the
starting address of a 2048 byte buffer in memory where the user's
Screen is to be saved. When the location is entered the screen
nemory is set to a clear screen of 2048 spaces (20H). The ASCII
option of the MODIFY MEMORY command may be used to set the screen
to some initial condition.

The second option, "K <ENTER>", will bring the user's saved
screen back to the video display and leave it there as long as
the ENTER key is held down. This option allows for a quick
review of the user's display.

18

The third option, "K ¥, is usad to wurn the KEEP SCREEN option
on. UWhenever a program is stepped with this option on, the
user's sereen will be redisplayed and saved continuously. TASMOMN
will not affect the user's scereen at all.

The forth option, "K N¥, is used to turn the KEEP SCREEN option
off. The current saved screen is not changed by turning the
copmmand off.

The screen buffer may be cleared by the "K start address"™ option
or the ZERO MENORY command. Example inputs are:

K DCOO Set user's screen buffer at DCOO-FFFF
and clear the buffer (make it all

spaces).

K <ENTER> Display the current saved screen.

KY Turn the KEEP SCREEN command on.

]
b

Turn the KEEP SCREEN command off.

& MW
GELIEDAL, COMEIZNTS
ting of the source code 18 available from The
&5

A commented 1i
r for $30. The

Alternate @@a
address is

res

The Alternate Source
704 N, Pennsylvania Ave.

(5173

101G THROUGH BASIC

A powerful feature of TASHMON is that the BASIC interpreter
written by Microsoft may be single stepped.

This allous a EQSKC program to be entered from the keyboard and
RUN. TASNDN will step through the routines of the BASIC
interpreter to ﬁmW“orm these tasks.

The first step is to get BASIC and TASMON co-resident in memory.
This can be done a few ways:

Disk users can load TASMON from DOS and load BASIC by typing:
L <ENTER>

BASIC/CHD.BASIC

AAAA D3B3 CCCC

Where AAAA, BBBB, and CCCC are the starting, ending, and
execution addresses that TASMON reports for BASIC/CMD.

19

The next step is to set a breakpoint at 5920, This the address
of the BASIC command mode. If this breakpoint is not set, any
error from BASIC such as a SYNTAX or MISSING OPERAND error will
cause TASMON to be exited.

If TASMON is ever exited in this manner simply re-enter the
monitor by typing:

>DEF USR = &HE000 <ENTER>
>X = USR(0) <ENTER>

The state of the Z-80 registers will remain unchanged.
Therefore, stepping can continue from where TASMON was exited.

RESTARTS must be set to "execute in full®™ mode. Press the "J"
key until this mode 1is enabled. The "execute in full" mode is on
when an "!" is displayed after the "J" pressed by the user.

Now BASIC can be either single stepped via the DOWN ARROW key or
nin key or TRACE mode.

If TRACE mode is selected with CALLs executed in full and the *7"
speed option is selected (fastest TRACE step rate), BASIC will
operate about 5000 times slower than normal.

If CALLs are stepped through, keyboard characters must be held
down until the keyboard driver routine used by BASIC scans
through them. After this there is a significant stall to
eliminate keybounce. For these reasons CALLs executed in full is
recommended for stepping BASIC.

The re-entry address of BASIC is 5920. Modify the PC register to
this address before stepping BASIC as follow:

k PC 5920
After TASMON has been patched in, BASIC will function normally.

Some BASIC commands will not function correctly. For example,
none of the disk input/output commands will function correctly.

The breakpoint at 5920 will be executed each time the ENTER key
is pressed. This may be an irritation, but the breakpoint is
required or stepping BASIC will not function correctly.

When the breakpoint at 5920 is executed, simply continue tracing
or single stepping by pressing the appropriate command key(s).
For example, to continue with TKACE mode type:

T !
Pressing the BREAK key will exit BASIC and return to TASMON. To .

contique stepping BASIC, simply continue tracing or single
stepping by pressing the appropriate command keys.

20

Refer to SESSION 4 for more information and an example of single
stepping a BASIC progran.

21

The following sample sessions are examples using TASMON's
commands.

The distributed version of TASMON loads from EOOO0-FFFF with an
entry point of E000. However, some owners of TASMON will
probably want TASMON to rum at low memory or 3000-4FFF. To do
this enter the following commands:

From DOS enter TASMON by typing:

TASMONY

The Z-80 registers and user prompt will be displayed.

Next use the RELOCATE command to move the program to memory
starting at 3000. The format is:

X E000 FFFF 3000 which relocates memory from EOQ00-FFFF to
memory starting at 3000.

Now TASMON resides at EOQOO0-FFFF and at 3000-4FFF. To save the
low memory version to disk use the WRITE command. The format is:

W 3000 4FFF 3000
LTASMON/CMD

which dumps memory from 3000-4FFF with a transfer address of 3000
to disk with the file name "LTASMON/CMD",

Whenever "LTASMON" is typed in from DOS the low memory version of
the program will be executed.

22
SESSION 2 - STEP AND TR

CE @ /CMD FILE

The short prograi used in this example apbea?s as follows:

B

26100
NI
GL123
30130
JG 1450
GC153
03160
G170
001E0
00190
00200
00210
00220
00230
50246
00259
00e60
0U270
00280
00290
00300
00310
00320
0G330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
004590
004h0
00470
00480
00490 DISPL
06500
00510
00520
00530
00540
00550
006560
00570 KIMSG
00580 BUFF

DI
LD
LL
RST
LD
LD
RST
LD
LD
LD
RST
X
LD
LD
RST
D
CALL
i.D
LD
LD
RST
EY
LD
LD
RST
LD
CALL
LD
LD
LD
RST
EX
LD
i.D
RST
LD
CALL
D
RST
LD
INC
OR
KET
LD
LD
RST
JR
DEFM
LEFM

(94

Qhe © QDw
oSN ACR VN o ol AV AN
el

995(9
7810
A,82

28hH

DE, HL

HL , BUFF
4,99

28H

HL ,KIMSG
DISPL
E,'DTf
D,'Qrv

A, &2

28H

DE, KL

HL ,BUFF2
A, 99

28H

HL , DOMSG
DISPL
E,'P?

D, "R!*
A,82

28H

DE, HL
HL,BUFF3
A,99

28Y4

HL , PRMSG
DISPL
A,22

28H

A, (HL)

TR ONEO

:ELIMINATE INTERRUPTS
:HOME CURSOR CHAR
:DISPLAY A CHAR CODE
:DO SVC

;CLEAR TO EOF CHAR
:DISPLAY CODE

:D0 SVC

:LOAD DE WITH ®KI NAME

sSET UP SVC #82

;DO SVC

:GET RESULT IN DE
:POINT TO BUFFER
;CONVERT TO ASCII

:D0 SVC

:POINT TO #KI MESSAGE
*DISPLAY IT

:LOAD DE WITH ®DO NAME

:SET UP SVC #82

:DO SVE

:GET RESULT IN DE
:POINT TO BUFFER
:CONVERT TO ASCII

DO SVC

;POINT TO #DO MESSAGE
:DISPLAY IT

:LOAD DE WITH ®#PR NAME

:SET UP FOR SVC #82
DO SVC

:GET RESULT IN DE
:POINT TO BUFFER
:CONVERT TO ASCII

DO SVC
:POINT TO #PR MESSAGE
:DISPLAY IT

:EXIT TO TRSDOS

:DO SVC - BYE, BYE!
:GET THE CHAR AT (HL)
:BUMP POINTER

:7ZERO BYTE?

:RETURN IF SO

:PUT CHAR IN C
:DISPLAY A CHARACTER
:DO SVC

:GO BACK TO LOOP

'"Tne keyboard DCB resides at:

fxxaxH?®

™)
(W)

n0590 DEFH 00O0DH

00600 DOMSG DEFHM 'The video DCB resides at: '
00610 BlUFF2 DEFM "xxxxH'

00620 NEFY 000DH

00630 PRMSG DEFYM *The printer DCB resides at: '
00640 BUFF3 DEFM *xxxxH?

00650 DEFY 00ODH

00660 END 30004

The purpose of this program is to find the Device Control Blocks
for the major devices (keyboard, video, and printer) and display
them on the screen. For this session TASMON is assumed to be in
memory frow EO00-FFFF and the short program given above is saved
on disk under the file name YTEST/CMD". The distributed copy of
TASMON has both of these files on the master diskette with the
indicated load addresses.

The first step is to load the file into memory. The LOAD command
is used for this by keying in:

L <ENTER>
TLST/CMD
3000 3088 3000

The file "TEST/CMDY loaded from 3000-30Bb with an entry point of
3000.

The first time through the program we will simply single step it.

The first step is to load the PC register with the starting

address of the program or 3000. Use the REPLACE command to do
this:

R PC 3000

To aid in viewing the program, disassemble the progranm to the
screen. This is done by entering:

D 3000

The first 23 instructions of the program will be displayed on the
left side of the screen. MNow hit the BREAK key to get back to

command mode. The disassembled code and the Z-80 registers will
be displayed. The screen should appear as follows:

3000 F3 : DI DI

3001 OE1C LD C,1C IX u4ci#1 IY 094C
3003 3E02 LD A,02 AF*' 4B43 BC' 4353
3005 EF RST 28 DE' AA52 HL' OBOA
3006 OQE1F LD C,1F AF OOFF BC u4cud
3008 3E02 LD A,02 DE u4cu48 HL AO070
300A EF RST 284 SP 41E4 PC 5F00
300b 1649 LD D,49 SZTH1PNC (HL) H4C

300D 1E4B LD E,u4B -

24

300F 3E52 LD A,52
3011 EF RST 28

3012 EB EX DE , HL
3013 217130 LD HL, 3071
3016 3E63 LD A,63
3018 EF RST 28H
3019 215430 LD HL, 3054
301C CD4A30 CALL 304A
301F 1E44 LD E, 44
3021 164F LD D, UF
3023 3E52 LD A,52
3025 EF RST =~ 28H
3026 EB EX DE,HL
3027 219230 LD HL, 3092

Notice that the labels used in the source code have been changed
to actual addresses, and the text message appears as Z-80
instructions-.

Hit the BREAK key to exit the DISASSEMBLE mode and reenter
TASMON's command mode.

To single step the instruction at the PC register or 3000 (which
is a DI) hit the DOWN ARROW or "I" key. The PC equals 3001 and
the instruction at 3001 (or PC) is LD C,1C.

Single step this instruction. The C register will hold 1C or an
ASCII "HOME CURSOR". PC will now be 3003. The next instruction
is "LD A,02", Single step PC again. A equals 02 or the SVC code
to display a character. PC now holds 3005. The instruction there
is a RST 28H. This instruction is the SVC, or Supervisor Call.
Remember the "J" key? Press it until you see a backslash. This
is to make sure that the RST will be executed in full. Single
stepping through it could be disastrous for reasons that are
explained in the Technical Appendix. In the meantime, execute
this instruction in full.

The next instruction is LD C,1F which is the ASCII code to clear
to the end of the frame (screen).

The next instruction is LD A,02. Again, this is the SVC code to
display a character on the screen. Step this instruction also.

The next instruction is the RST 28H. Yet again, this is the
actual Supervisor Call instruction. Execute it by hitting either
"I" or "g".

The screen should have cleared. TASMON's register display will
still be intact, since TASMON updates the register display
whenever necessary.

The current instruction should be "LD E,4B". You can verify this
by looking above TASMON's register display. The LD E,4B should
appear there. Single step this instruction.

25

Tne next instruction is LD D,49. Single step this instruction
also.

The next instruction is LD A,52. This is the code for the SVC to
find the DCB of the device named in DE (which at the moment is
device ®#kI, or the keyboard. 49H is a "K" and 4BH is an "I".

The next instruction is the SVC to find the DCB. Execute it in
call.

HL should now contain the DCB address. The next instruction, EX
DE,HL should move the address to the DE register pair so that we
oan convert the hex value to an ASCII string with the next SVC.
Step the EX DE,HL.

Now we see LD HL,3071 which points HL to the buffer where we want
to store the result of the ASCII conversion of DE. Step the
instruction.

Next we have LD 4,63 which is the code for the hex to ASCII
convert SVC. Step this.

Here is the SVC. Execute it in full.
Just to see if it worked, type:

A 3071 <ENTER>

You should see the string of characters that represents the

number that was in the HL register pair after the third SVC (the
one that found the address in the first place.) If so, all is
well.

Hit <BREAK> to get back to TASMON's command mode. The next
instruction is LD HL,3054. This points HL to the beginning of a
message that preceedes the actual value of the address. Step
this instruction.

Next we have a CALL 30LA. For the moment, let's take a clo=e
1ook at this subroutine by pressing the "I" key to single s

Notice that the PC is now at 3044, which is the address that .=
CALLed. The instruction is LD A,(HL). Remember that HL is
pointing to a message. Step this instruction.

Now we see an INC HL instruction. This simply moves HL to the
next character in the string. Step this one, too.

Now we have an OR 4. ORing A against itself like this is an easy
way to see if A contains a zero. Step this instruction.

26

Look at the register display. The line of dashes and letters has
been changing throughout this session, but only now is it really
important, because the instruction here is RET Z. 1Is there a Z
in the line of dashes? No, there isn't. That's because the
contents of A (the first character of the message, in other
words) is not equal to zero. Step this instruction.

It didn't return, did it? The current instruction is LD C,A.
This is necessary because the SVC to display a character needs
the character to be in the C register. Step this instruction.

The next one is the (by now) familiar LD A,02 instruction, which
is the command to display a character. Step this instruction.

Now we have the SVC. Execute this in full. An uppercase "T"
should appear in the upper left hand corner of the screen.

The next instruction is a JR 304A. Step this.

We're back at the beginning of the subroutine! We already know
what the subroutine looks like, so let's trace. Type T 1 to
start tracing.

We want the tracing to stop as soon as the subroutine is done, so

press the "R" key. This tells TASMON that as soon as it is about

to execute a RET instruction to stop tracing and go back to EI
command mode.

The tracing can be sped up by pressing a key from 1 to 7 if the
trace is too slow for your taste.

The tracing will stop with the current instruction being the RET

Z that we saw earlier. The fact that TASMON has stopped tracing

means that the condition has been met, and the RET is about to be
executed. Step through the RET.

The next instruction is LD E,44. This is the first LD in the
next device search setup. We now know how TEST/CMD goes about
the setup process, so let's let the program do the work now and
just look at the results.

The best way to do this is with a breakpoint. Before setting a
breakpoint, though, it helps to know where to set the breakpoint!
So, type D <ENTER> to start disassembIing to the screen from the
current instruction.

You should see some instructions that are identical to the ones
that we just executed, except that the LD's to E and D are
different and the buffer addresses are different. At address
3033 there is another set of practically identical instructions.
Since the instructions seem to be following a logical pattern
(which, indeed, they are) press <BREAK> to return to the command
mode and type:

27
B 1 3033

which will set breakpoint #1 at 3033H. The current instruction
is still LD E,44 and the PC contains 301F. Now type:

G <ENTER>

Practically instantly you should have seen the computer print a
message telling you where the video DCB is. That's because when
you typed in the G command TASMON actually gave control to the
TEST/CMD program briefly, allowing it to run at full speed. It
then ran into the breakpoint at 3033, which is what the PC should
contain now. The current instruction should be LD E,50.

Now we want to remove the breakpoint, since we won't be using it
again. Type:

This will remove breakpoint #1. Remember that you can remove ALL
breakpoints by typing:

C <ENTER>

Now we just want to finish executing the program, so type:

G <ENTER>

which is what you typed after you set the breakpoint. The
program will take over again, but since there is no breakpoint
for it to hit, it will continue running and return you to TRSDOS
Ready. %You will have to reload TASMON to continue.

28
SESSION 3 - DISASSEMBLE PROGRAM TO DISK

The "O" or OUTPUT command is used to accomplish this task.
The first step is to load "TEST/CMD" into memory by entering:
L <ENTER>

T§§IZCMD

3000 30BB 3000

Next, enter the OUTPUT command as follows:

0 3000 30EB 3000
TEST/ASH -

The disassembly will be written out to aisk with the file name
TEST/ASM starting at 3000 and ending at 30BE with a transfer
address of 3000. Now exit TASMON by keying in:

E <ENTER>
The system will reenter DOGS. Suppose you have an

Editor/Assembler. Enter the E/A by tyring its file name from
LOS.

Next, load TEST/ASM with the "LD" command of Editor/Assembler (or
similiar command if using a different E/A). As stated previousiy
under the explanation of the OUPUT command, the first command to
enter is a RENUMBER command (assuming that your E/A requires line
numbers - ALE doesn't, ZEUS renumbers automatically, and others
work still differently.) TASMUN writes cut the file with line
numbers of 00000 so this command may be required. To do this
enter:

N 100,10 which renumbers the program in increments of 10 with

a starting line number of 100, assuming that you are using Radio
Shack's Editor/Assembler,

The source listing should be:

00100 ORG 3000H
00110 DI

00120 LD C,1CH
00130 LD A,02H
00140 RST 28H
00150 LD C,1FH
00160 LD 4,0zh
00170 RST Z8H
00180 LD E, 4BH
00190 LD D, 49H
00200 LD A,52H
00210 RST 28H

00220 EX DE, HL

00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
60420
00830
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
06570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
60710
00720
00730
00740
00750
00760

Z304AH

Z3054H

LD
LD
RST
LD
CALL
LD
LD
LD
RST
EX
LD
LD
RST
LD
CALL
LD
LD
LD
RST
EX
LD

RST
LD
CALL
RST
LD
INC
OR
RET
LD
LD
RST
JR
LD
LD
LD
JR
LD
LD
LD
LD
LD
LD
LD
JR
LD
LD
JR
LD
LD
LD
LD

HL,Z3071H
A,63H

284

HL, Z3054H
Z304AH
E,4u4H

D, 4FH
A,52H

284

DE , HL
HL,Z3092H
A,63H

284

HL ,Z3078H
Z304AH
E,50H
D,52H
A4,52H

28H

DE , HL
HL,Z30B5H
4,63H

28H
HL,Z3099H
Z30U4AH
A,16H

28H

A, (HL)

HL,

=
o=
o

30C4H

o v w0 w @ e @ ow Ly C0e e
M Qe UQN PHEZOIZO®

Pe o BN o
Saus?
L)

gty

M e DNEUWE R NDMES DI O NN O
X Oy 0 e

w o

29

00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300

Z3078H

23099H

Cw

NI Om
1]
<

= S (A

[o 1]

w w w w w N e
o
=2
A

Dwww ~-

o

30F3H

el apiit= sl @ L

30CTH

T fFi~

30F9H

[anll aadt= ol o T Sl wal
S~
=3

v w w v w LMPNIIe v e Te N v No v v v Nw v w
= s LA) v
QO Ow
[\ Resligo N oo}
o (=]
& L
A

Dwmm~T~

—wx

~

[und ©® b
oo

2]

= o3

O I~
>
X

e © LMNwe © @
Crr e
W~ I

Ne o N e
O

11CH

ATZEE " EACNTAZIC0 QO rpr~ AT~ 20D 2o OO AE I

e

|
S~ W
£=3

01310 LD L,C
01320 LD H,H
01330 LD H, 0.
(01340 LD (HL) ,F,
01350 IR NZ,3113H
01360 LD (HL),H
01370 LD A, (T820H)
01380 L] A,B
01390 LD A,B
01400 LD A,B
G1410 LD C,B
01420 DEC C

01430 NOP

V1440 END 3000H

Notice that the source code here is the same at the original
source code of "TEST/CMD" except that the labels are different
and the text message now appears as 2-80 instructions. Text
messapes are generally easy to convert from Z-80 instructions
hack to text. This is done by converting the instructions to
numbers. Anyone who has hand assembled a program has done this.
The only problem exists when spaces are present in the text. The
code for a space is 20H, which also happens to be the Z-80
instruction for a "JR NZ,e". The problem does not exist in
finding the space, but in finding the character after the space.
The character after the space is the index of the relative jump
minus two.

To determine the character after the space (or JR NZ) at line
00610 do the following:

Start counting instructions starting at the last known address.
In this case the last know address is 3056 (or Z3056H - TASMON
simply puts a "Z" in front of the address when making it a
label). By doing this it is determined that the address of the
JE NZ,30C4H instruction in line 00610 is 3057. We add one to the
last known address because instructions such as "LD D,H" are only
one byte long. however, if a "JR NZ,e™ instruction is
encountered, two must be added to the address since this
instruction is two bytes long.

Now subtract 3057 from 30CY4 or more generally, subtract the
address of the jump instruction from the destination of the jump.
The result of this subtraction in our case is 6DH.

Now subtract two more from this value. This subraction is
necessary since the index of a relative jump is stored in memory
as the index minus two. Subtracting two from 6DH gives 6BH,
which is an ASCII "k". See line 570 of the first program listing
in session 2.

The instructions such as "LD C,B"™ must be converted back to ASCII
by refering to the Z-80 instruction tables in a book such as
kadio Shack's TRS-80 ASSEMBLY LANGUAGE PROGRAMMING.

32

It is also important to note that some labels were not generated
because the address that they reference contains the second or
third byte of an instruction, in this case a LD A,(7820H)
instruction. To resolve these references, put the label in front
of the LD A,(7820H) and change the reference from "label" to
"label+2". This will make the reference refer to the correct
address, even though the label is off.

An easier way to fix messages is to view the program with an
ASCII dump from TASMON and record the addresses of the text
messages. If a printer is available, pressing the "®" key will
dump the screen contents to the printer thus giving a hardcopy
listing of the ASCII dump.

SESSION 4 - TRACE A BASIC PROGRAM

In this example TASMON must reside in memory from EO000-FFFF. It
must also be protected, so from TRSDOS type:

MEMORY (HIGH = X'DFFF') <ENTER>

Now load TASMON from disk. If TASMON is not already located at !E
E000-FFFF, move it there with the X command as described earlier. ,
iow set RESTARTS to "executed in full" mode by pressing the "J"
key until you see the backslash:

les

Next load BASIC by typing:

L <ENTER>
BASIC/CMD.BASIC

AAAA, BBBB, and CCCC are the starting, ending, and execution
addresses, respectively, of BASIC. Now set the PC to CCCC by
typing:

R PC CCCC

and start the TRACE by typing:

Tt

The initialization routine for BASIC is now being traced. The
speed of initialization can be sped up by pressing the "T" key.

After a long initialization process, the READY message will
appear. We are now tracing through BASIC. Enter the following
program:

33

10 PRINT "START®
I =) 5

30 PRINT I; 1/2; 1%2

0 NEXT 1 ‘

50 PRINT "DONEW®

60 END

Now type:
LIST

The BASIC program should list upon the screen. Notice that
TASMON is continually redisplaying the registers. This short
program may even be RUN from TASMON's TRACE mode.

If a BASIC error occurs, TASMON will be exited completely. To
fix this condition a breakpoint must be set at 5920. Do this by
entering:

B 1 5920

To exit BASIC and return to TASMON press the BREAK key. This
must be done before any TASMON command may be entered.

The breakpoint at 5920 will occasionally cause TASMON to be
reentered. To continue stepping BASIC simply restart tracing as
follows:

T !

If a BASIC program being run is to be halted and control returned

to the BASIC command mode, press the BREAK key and change the PC
register to 5920 as follows:

R PC 5920

Then continue tracing.

Let's start with a fresh screen by pressing the CLEAR key.
Now start tracing BASIC if not already doing so.

List the program again by typing:

LIST

The program should list on the screen.
To RUN the program type:
RUN

TR |

The message "STARTY will be printed on the screen followed by
five rows of three numbers and the "END"™ message.

'I’

[iee!
L]

!

Error number

00
01
02
03
04
05
06
o7
08
09
0A
0B
0cC
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
iB
1C
1D
1k
1F
20
21
22
23
24
25
26
27=3E
3F

Error description

No error

Parity error during header read
Seek error during read

Lost data during read

Parity error during read

Data record not found during read
Attempt to read system data record
Attempt to read system data record
Device not available

Parity error during header write
Seek error during write

Lost data during write

Parity error during write

Data record not found during write
Write fault on disk drive

Hrite protected diskette

Illegal logical file number (bad DCB)

Directory read error
Directory write error
Illegal file name (bad DCB)
GAT read error

GAT write error

HIT read error

HIT write error

File not in directory
File access denied
Directory space full
Disk space full

EOF encountered

NRF out of file range
Full directory

Program not found
Iliegal drive number

No device space available
Load file format error
Memory fault

Attempt to load to ROM
Illegal access attempted
File has not been opened
Not defined

Unknown error code

35

36

APPENDIX B - TASMON COMMAND SUMMARY

This notation is used in the command summary

4 digit hex value
4 digit hex starting point
EE = 4 digit hex ending point

[72]
[72]
"o

TT = U4 digit hex transfer point

n = Single digit from 1 to 9

h = 2 digit hex value

A SS ASCII dump of memory starting at SS.

B n HH Set breakpoint n at HH.

B <ENTER> Display the breakpoints.

Cn Clear breakpoint n.

C <ENTER> Clear all breakpoints.

D SS Disassemble memory starting at SS.

E <ENTER> Exit TASMON and return to DOS or
BASIC

F SS h h hh Find search key h b h h starting
at SS.

G HH Start execution at HH.

G <ENTER> Start execution at user's PC.

H SS Dump memory in hex starting at SS.

I Single step - CALLs stepped through.

J (I or) Toggle RESTARTS between stepped
through and execute in full.,

K SS Set user's screen buffer at SS and
clear the screen buffer.,

K <ENTER> Display the user's screen for as
long as the ENTER key is hela down.

KY Turn the KEEP SCREEN command on.

K N Turn the KEEP SCREEN command off.

L

M

jae)

<offset>

H 83

A S8

nh

I
<ENTER>

SS EE TT

SS EE

rp HH
H1 H2 =+
H1 H2 =

SS EE TT

SS EE TT

SS EE TT

Load in CMD disk file named "file"
with an optional offset.

Eadify memory in hex mode starting at
38,

Modify memory in ASCII mode starting
at SS.

Set number of executions for breakpoint
n to h,

Initialize all execution numbers to 01:

Reset all execution numbers to
their default values.

Output disassembled listing

starting at SS, ending at EE with a
transfer address of TT to disk with the
file name "file",

Disassemble to the printer starting
at 35 and ending at EE.

Replace register pair "rp" with HH.
Add H2 to H1.
Subtract HZ2 from Hi.

Trace through a program with CALLs
stepped through.

Trace through a program with CALLs
executed in full,

Go to user routine. Does nothing unles
a routine 1s patched in.

View the disk file titled "file",
Returns file starting, ending and
transfer addresses without loading into
memory.

Write a CMD disk file starting at SS,
ending at EE with a transfer address
of TT and file name of "file",

Relocate memory from SS to EE and
place it in wmemory starting at TT.

Block move from SS to EE and place in
memoery starting at TT.

37

S

Z SS EE h
RT ARROW

LFT ARROW

DN ARROW

SHIFT-CLEAR KEY

BREAK KEY

38

Set memory from SS to EE equal to h.

Skip current instruction in user's PC
and point to next instruction.

Back up user's PC to the previous
instruection.

Dump screen contents to the printer.

1) Single step - CALLs executed in full
2) Display next line of a memory dump
3) Point to next byte when modifying
memory

Clear the screen and display the
registers,

Return to command mode.

|
1
|
|
|
M
N

S e e -

39

APPENDIX C - SAMPLE USER FUNCTIONS

This appendix will give an example of patching in a USER command
(the "U" command). This routine will allow HARD COPY TRACING and
DISPLAY THE LAST FIFTEEN EXECUTED INSTRUCTIONS.

HARD COPY TRACING is the same as normal tracing except the
current PC address and Z-80 mnemonic are sent to the printer. If

the printer is not on when "HARD COPY TRACE"™ is selected, nothing
is printed and execution continues as if the TRACE command had

been selected.

DISPLAY THE LAST FIFTEEN EXECUTED INSTRUCTIONS while tracing will

display the user's PC and Z-80 mnemonic on TASMON's display
lines.

This patched routine assumes that TASMONY version 1.00 is being

used, Also, TASMON should be located in memory starting at
EOOOH. The following bytes are entered:

M H FD6F 6D

and enter the following bytes {rom there:

FD6F: 00 00 CD 32 E9 CD EC EO FE 44 28 OB FE 48 28 46 FE 55
FD81: CA F7 EO 18 EE CD 32 E9 32 30 FE C3 43 E8 AF 32 2F FE
FD93: 32 30 FE C3 3E EC 34 30 FE BT 28 22 CD 23 E9 24 42 F8
FDA5: CD 37 F1 3E 20 CD 32 E9 21 38 00 06 11 E5 C5 06 01 3E
FDB7: OF EF CD 94 F7T C1 E1 23 10 F1 3A E1 F8 C9 CD 32 E9 32
FDC9: 2F FE C3 43 E8 3A 2F FE B7 CA 03 E1 E5 D5 1E 50 16 52
FDDB: 3E 52 EF EB OE 00 3E 05 EF D1 E1 C2 03 E1 28 42 F8 7C
FDED: CD 15 FE 7D CD 15 FE 3E 20 CD A3 F7 CD 03 E1 06 14 21
FDFF: 38 00 E5 C5 06 01 3E OF EF €D A3 F7 €1 E1 23 10 F1 3E
FE11: OD C3 A3 F7 F5 CB 3F CB 3F CB 3F CB 3F CD 24 FE F1 E6
FE23 OF C6 30 FE 3A 38 02 C6 07 €3 A3 F7 00 00

MODIFY MEMORY in hex as follows:

M H EOE7 71 6C
EOES " EO FD
EOE9 €3 <BREAK>

M HE732 CE C9
E733 " E1 FD
E734 D1 <BREAK>

M H E868 : 34 CD
ES69 ¢©C 99
E86A F8 ¥D

E86B B7 <BREAK>

NOTE: DO NOT hit the BREAK key to exit from this last memory
modification until the correct values are in place. Failure to
do this will probably cause a reset!

40

M

E101 4 3E 71

' EO FD

h
102
103 : 3A TBREAK>

E
E
To write the patched version of TASMON out under the file name
"UPTASMON/CMD", enter the following command:

W E0Q0 FFFF E0Q00
UPTASMON7CTHMD XENTER>

To execute the "HARD COPY TRACE" command, press the "U" key
followed by the "H" key for HARD COPY TRACE. Next, enter the
CALL stepping mode. This is an "I" for CALLS stepped through or
a DOWN ARROW for CALLs executed in full.

TASMON will step through memdry as it would with the TRACE
command except the following type output is sent to the printer:

8000 LD A,(37E8)
All TRACE command keys function with the "HARD COPY TRACE" patch.

The DISPLAY LAST FIFTEEN EXECUTED INSTRUCTIONS patch is executed
by pressing the "U" key and the "D" key for DISPLAY LAST FIFTEEN
EXECUTED INSTRUCTIONS. Next, enter the CALL stepping mode. This

is an "I" for CALLs stepped through or a DOWN ARROW for CALLs
executed in full.

After each instruction is executed, its address and Z-80 mnemonic
are displayed on TASMON's command lines. Up to sixteen
previously executed instructions will be displayed.

All TRACE command keys function with the "DISPLAY LAST FIFTEEN
EXECUTED INSTRUCTIONS" routine.

This patch may be in a different location for either past or
future versions of TASMON. Any future version may have these
commands added to its repertoire.

If even more user routines are to be added, the address at FD7D=-
FD7E can be modified to the starting address of the new routine.
To execute this routine press the "U" key to jump to this user

patch and another "U" to jump to the new routine.

41
MODEL IV TASMON TECHNICAL NOTES

Model IV TASMON was written in such a way as to be as
functionally compatible with the Model I/III versions as
possible. There are a few quirks, though, that the Model IV user
should be aware of'.,

First of all, tape support has been eliminated. The reason for
this should be obvious.

Logical Systems, Inc., the authors of TRSDOS 6.x, obviously don't
want people fooling around with the system, but rather than
sacrifice the power that TASMON had in order to accede to LSI
imperatives, we elected to ignore their warnings about tampering
with the system at the hardware level and implement the same
features that were in the Model I/III versions of TASMON.

Scrolling was a problem. TASMON scrolls the area directly
underneath the register display while maintaining the display.
The video control SVC's were simply not flexible enough to allow
this to happen.

The "keep screen" feature was another tricky one. There ARE
SVC's to move the screen to/from a 2K buffer, and I used those.
The problem, then, was viewing the kept screen. Ideally, it had
to be identical to the Model I/III technique in which the user
simply typed "K" and held down the <ENTER> key for as long as
they wanted to see the screen. In order to do this, though, I
had to access the keyboard directly = another LSI no no. Again,
rather than sacrifice the keep screen capability, I wrote the
code to access the keyboard as necessary, i.e., directly, rather
than through a SVC.

Since this code is very system dependent, and might have to
change as TRSDOS 6.x changes (unlikely = it's not THAT system
dependent!) we elected to put the code in an overlay.

Another reason for using the overlay is that the code there
toggles the high RAM bank in and out, and if this code were in
TASMON itself and TASMON were in the upper 32K of RAM, in the
process of toggling high RAM back and forth, TASMON would toggle
itself right out of existence! The solution to this problem was
to make the code part of an overlay and to make it self-
contained, i.e., no referrences to addresses within TASMON, and
to have its own stack. If you examine the overlay code, you will
see how this has been accomplished.

There is a drawback to using an overlay to do TASMON's scrolling.
You cannot trace or single-step through any RST 28H that calls in
a DOS overlay, since to do so would mean that the DOS would load
its overlay; TASMON would load ITS overlay on the next call to
the scrolling routine; the DOS, not being aware that its overlay
was no longer in place, would try to execute TASMON's overlay;
and massive amounts of chaos would exist. So, don't trace or

42

single-step RST 28H unless you know for a fact that the RST will .
not load a DOS overlay. E

Paul F. Snively

= =

PATCHES TO CHANGE CERTAIN CHARACTERISTICS OF TASMON

These patches are optional and may be applied as desired to your working copy of TASMON, They
may be applied in memory only, in which case they will remain in effect unt:1 the end of your sessii-
with TASMON, or you may use TASMON’s W D command to write a copy of vour patched TASMON ©
disk,

FLEASE NOTE that these patches apply only to the following versions of TASMON, however.
information is given to allow you to find the proper location to apply the patch if you have another
version.

MODEL I! VERSION 2,22 MODEL III! VERSION D7 MODEL 4! VERSION 1,11

PATCH # 1 - CHANGE FIRST CHARACTER OF LABELS DURING DISASSEMBLY,

Using TAEMON's M A (Modify memory using ASCII) command, change the following byte from the
letter "I" (3AH) to the desired firgt character for labels

MODEL I: 7484H MODEL III 748AH MODEL 4: FA24H

If you have a different version of TASMON, key in F nnnn 3E SA (where nnnn is normally &£000H i
the Models I & III, and ECOOH in the Model 4), The displayed address PLUS ONE is the byte ‘o
change.

PATCH # 2 - REMOVE 7-BYTE "HEADER" FROM DISASSEMELIES TO DISK.

TASMON was written to cutput disassembled source code that could he lnaded directly inte
Apparat’s modified version of the Radio Shack Editor-Assembler program (as found on NEWDOS/50
master disks), Most Editor-Assembler programs ave able to read this source code format, but spme
(notably Radio Shack’s Series 1) will not read these source code files because of the seven-byts
“header" that is placed at the beginning of these files. To prevent TASMON from writing this
"header", use TASMON’s M H (Modify memory) command to change two hvtes starting at the
addresses shown below. The bytes should be changed from 2E D2 o 18 19 in the Models I & 111, and
to 12 0C in the Model 4, This inserts a JR instruction that bypasses the code that writes the header
to disk. Change the two bytes starting at!

MODEL 1! 7212H MODEL IIT: 731CH MODEL 4! FZEEH
If you have a different version of TASMON, key in F nnnn 2E D2 (where nnnn is novmally 4Q00H in
the Models I & IIT, and ECOOH in the Model 4) to find the starting address to change.
PATCH # 3 - CHANGE AMOQUNT OF KEYBOARD DEBOUNCE (MODELS T & T11 ONLY),
This patch is especially useful when you are using a speed-un modification, or when running the
Model III version of TASMON on a Model 4 using the 4 MHz clock speed. Using TASMOHN's M :
{(Modify memory) command, change the following byte from 0AH to the value that gives the desived
amount of keybounce control, For example, to double the normal keybounce delay, change the byte to
14H}

MODEL 1) 7A10H MODEL III! 7A52H

If you have a different version of Model I or III TASMON, key in F &000 01 00 OA, The displayed
address PLUS TWO is the byte to change.

Patches supplied by Jack Decker,

	_0302080406_001.pdf
	tasmon-00.pdf
	tasmon-01.pdf
	tasmon-02.pdf
	tasmon-03.pdf
	tasmon-04.pdf
	tasmon-05.pdf
	tasmon-06.pdf
	tasmon-07.pdf
	tasmon-08.pdf
	tasmon-09.pdf
	tasmon-10.pdf
	tasmon-11.pdf
	tasmon-12.pdf
	tasmon-13.pdf
	tasmon-14.pdf
	tasmon-15.pdf
	tasmon-16.pdf
	tasmon-17.pdf
	tasmon-18.pdf
	tasmon-19.pdf
	tasmon-20.pdf
	tasmon-21.pdf
	tasmon-22.pdf
	tasmon-23.pdf
	tasmon-24.pdf
	tasmon-25.pdf
	tasmon-26.pdf
	tasmon-27.pdf
	tasmon-28.pdf
	tasmon-29.pdf
	tasmon-30.pdf
	tasmon-31.pdf
	tasmon-32.pdf
	tasmon-33.pdf
	tasmon-34.pdf
	tasmon-35.pdf
	tasmon-36.pdf
	tasmon-37.pdf
	tasmon-38.pdf
	tasmon-39.pdf
	tasmon-40.pdf
	tasmon-41.pdf
	tasmon-42.pdf

